

The FGCZ-GSEA-ORA Tool for Pathway Analysis in Proteomics

Nanni P.¹, Wolski W.¹, Kook L., Panse C.¹, Grossmann J.¹, Fortes C.¹, Kunz L.¹, Schlapbach R.¹

¹Functional Genomics Center Zurich (FGCZ), University/ETH Zurich

Quantify thousands of proteins

Mass spectrometry (LC-MS) can quantify thousands of proteins in a biological sample, revealing up- or downregulation of the proteome in response to a stimulus. The result is a list of proteins, ranked by foldchange, t-statistic or p-value, which can be used for pathway analysis.

The FGCZ-GSEA-ORA Tool

A plethora of R packages for ORA or GSEA are available on the Comprehensive R Archive Network [3] and Bioconductor [4]. We developed the FGCZ-GSEA-ORA package [5] to make pathway analysis even easier.

FGCZ-GSEA-ORA is an **R** package for pathway analysis which:

- unifies ID mapping and enrichment analysis
- ensures reproducible results

Figure 1. A standard label-free protein quantification workflow

Analyze which pathways are affected

Analyzing the pathways in your experiment adds biological context and is often more sensitive and specific than monitoring single proteins. Pathway analysis [1] starts with the ranked proteins from your quantification experiment and with pre-defined "gene sets". These sets contain genes which are part of the same pathway or are located close to each other on a chromosome. The analysis subsequently identifies gene sets which are differentially regulated.

is user-friendly

Our R package generates HTML reports with visualizations and explains pathway analysis results. As of now, we integrated the pathway analysis using WebgestaltR [6] and sigora (Signature Overrepresentation Analysis [7]).

Figure 3. FGCZ-GSEA-ORA creates a folder structure with HTML files visualizing the ORA and GSEA results for all contrasts (e.g. gr_2 vs ctrl, gr_4 vs ctrl) and all selected signature databases (e.g. GO biological process, ...).

FGCZ Gene Set Enrichment Analysis (GSEA)

GSEA Results Enriched Pathways Input Data

a.

Figure 2. Pathway analysis requires gene sets and a ranked list of protein identifiers, like the one you get from a quantitative proteomics experiment [2].

Two pathway analysis methods:

Overrepresentation Analysis (ORA)

Pick all proteins exceeding a threshold (e.g. log2|FC|>1)

Gene Set Enrichment Analysis (GSEA)

Proteins ranked by score (log2(FC), t-statistic)

Figure 4. Example of GSEA plots included in the report: list of enriched pathways (a); volcano plots (b); intersection sizes between significantly enriched pathways (c).

FGCZ-GSEA-ORA creates automatic reports and is provided as part the label-free proteomics quantification analysis performed at the FGCZ.

Upcoming Features

- Test if a gene set is over-• represented among them (e.g. Fisher's Exact Test).
- How to choose the threshold? • E.g. biologically relevant effect size
- For each gene set: locate its members among the proteins and compute enrichment scores
- No thresholds needed

[1] <u>https://en.wikipedia.org/wiki/Pathway_analysis</u> [2] MSigDB (<u>https://www.gsea-msigdb.org/gsea/msigdb/index.jsp</u>) [3] CRAN (https://cran.r-project.org/) [4] Bioconductor (<u>http://bioconductor.org/</u>) [5] fgcz.gsea.ora (https://github.com/protViz/fgczgseaora) [6] WebgestaltR (http://www.webgestalt.org/) [7] sigora (https://CRAN.R-roject.org/package=sigora)

- Creating reports with enrichment results for different treatments
- Standardized R-API interface to compare different ORA GSEA algorithms
- Generating algorithm-independent reports.
- Additional analysis tools (e.g. enrichR, topGO).

Want to quantify your proteins? Contact us at proteomics@fgcz.ethz.ch!

Label-free quantification is one of our most popular services and we're happy to discuss your project.

www.fgcz.ch/applications/proteomics